Thursday, 27 April 2017

Math 205 Midterm Test

Math 205 Midterm Test


                Click Link Below To Buy:

Contact Us:
      Hwcoursehelp@gmail.com





1.  (8 marks)
a) Evaluate  the intgral R 1
3

|x| dx by interpreting it in terms


of area.
b) Find the derivative  dF /dx  of the function

0



F (x) =

Z


x2 1

sin(t + 1)
dt t + 1



2.  (5 marks) Find  the  antiderivative F (x)  of the  function  f (x)  = x ex2
such that  F (0) = 3.

3.  (12 marks) Calculate  the following indefinite integrals




(a)

Z  (2x  1)2
x


dx        (b)

Z
4t2 ln(t) dt       (c)

Z       x 1       dx x2 7x + 12



4.  (8 marks) Evaluate   the  following definite  integrals  (do  not  approxi- mate ):




(a)

3
Z  1 + arctan(x/3)
9 + x2
0



dx        (b)

1
Z
x exdx

0



5.  (7 marks) Find the average value of f (x) = 1 + sin2(x)  on the interval  [0, π].
Bonus Question (2 marks)  Calculate  the definite integral

2
Z                                     
p
 
[2 −   (2 x)(2 + x) ] dx

0
in terms of area (HINT: sketch the function)




1

No comments:

Post a Comment