Math 205 Midterm
Click Link Below To Buy:
Contact
Us:
Hwcoursehelp@gmail.com
1. (5 marks): (a)
|
Approximate the de nite integral A =
|
3
|
||||||
|
|
R
|
|
|
approximating rectangles of equal
widths.
|
|||
|
Riemann sum
|
|
3
|
using 3
|
|
R
|
|
|
(b)Now nd the
approximation by a left Riemann sum L3, again using 3
approximating rectangles of equal widths.
(c)Calculate the exact value of A by
integrating. Comparing this value with
12 (R3 + L3) : Do your results found in (a) and (b) appear reasonably
|
|
|
|
|
accurate?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2.
|
(3 marks): (a) Use Part 1 of the Fundamental Theorem of
Calculus to nd F0(x)
|
|||||||||||||||||||
|
|
|
|
|
|
|
3
|
p
|
|
|
|
|
dt.
|
|
|
|
||||
|
|
|
|
|
for F(x) =
|
cos
x
|
1 + t3
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
R
|
|
|
|
|
|
10t
|
|
|
|
|
||
3.
|
(5 marks): Find f(t); given f0(t) =
|
p3
|
|
and f(8) = 20.
|
||||||||||||||||
t 2
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
4.
|
(10 marks): Calculate the following inde nite integrals
|
|||||||||||||||||||
|
|
Z
|
|
p
|
x3
|
|
|
Z
|
3
|
x2 +
4x + 4
|
|
|||||||||
|
(a)
|
|
|
dx
|
(b)
|
|
|
|
dx
|
|||||||||||
|
|
|
|
x3 + x
|
||||||||||||||||
|
|
16 x2
|
|
|||||||||||||||||
5.
|
(12 marks): Evaluate the following de nite integrals (do
not approximate):
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
e
|
|
|
|
||||||
|
(a)
|
Z0
|
cos4 x
tan2 x
dx
|
|
(b)
|
|
Z1
|
x2 ln xdx
|
|
6. (5 marks): Find the area of the region enclosed by the curves x
= jyj and x = y2 2.
Bonus. (2 marks): Given that
Z
[f (x) + f00 (x)] sin xdx = 2
0
and f ( ) = 1; nd f (0).
No comments:
Post a Comment