FIN 401 Homework
Click Link Below To Buy:
Contact
Us:
Hwcoursehelp@gmail.com
The table below
reports data consisting of 30 observations. Each observation contains two
values (one for Y and one for X). Please construct a linear regression of the
structure: Y = a + bX.
What is the
magnitude of the coefficient b in this model?
Y
|
X
|
161
|
46
|
205
|
63
|
301
|
97
|
115
|
30
|
251
|
81
|
89
|
25
|
290
|
94
|
159
|
52
|
46
|
21
|
259
|
88
|
212
|
64
|
301
|
98
|
174
|
54
|
149
|
42
|
130
|
42
|
249
|
79
|
297
|
95
|
229
|
66
|
109
|
59
|
129
|
47
|
212
|
65
|
200
|
67
|
180
|
57
|
303
|
97
|
231
|
73
|
225
|
71
|
138
|
42
|
138
|
42
|
270
|
86
|
192
|
60
|
Question 1 options:
|
5.630
|
|
3.035
|
|
0.998
|
|
20.442
|
Save
Question 2 (1 point)
The table below
consists of 30 observations where each observation includes two values (Y and
X). Please estimate the following linear formulation using the table
below:
Y = a + b X
and please use
the estimated model to predict the value of Y when X is 50.
Y
|
X
|
161
|
46
|
205
|
63
|
301
|
97
|
115
|
30
|
251
|
81
|
89
|
25
|
290
|
94
|
159
|
52
|
46
|
21
|
259
|
88
|
212
|
64
|
301
|
98
|
174
|
54
|
149
|
42
|
130
|
42
|
249
|
79
|
297
|
95
|
229
|
66
|
109
|
59
|
129
|
47
|
212
|
65
|
200
|
67
|
180
|
57
|
303
|
97
|
231
|
73
|
225
|
71
|
138
|
42
|
138
|
42
|
270
|
86
|
192
|
60
|
Question 2 options:
|
157.37
|
|
155.25
|
|
158.39
|
|
151.95
|
Save
Question 3 (1 point)
Please use the
dataset from the table below to estimate the following linear regression model:
Y = a + b X
What is the
residual for the very first observation in the dataset (Y=161, X=46)?
Y
|
X
|
161
|
46
|
205
|
63
|
301
|
97
|
115
|
30
|
251
|
81
|
89
|
25
|
290
|
94
|
159
|
52
|
46
|
21
|
259
|
88
|
212
|
64
|
301
|
98
|
174
|
54
|
149
|
42
|
130
|
42
|
249
|
79
|
297
|
95
|
229
|
66
|
109
|
59
|
129
|
47
|
212
|
65
|
200
|
67
|
180
|
57
|
303
|
97
|
231
|
73
|
225
|
71
|
138
|
42
|
138
|
42
|
270
|
86
|
192
|
60
|
Question 3 options:
|
15.772
|
|
11.852
|
|
17.995
|
|
none of the above
|
Save
Question 4 (1 point)
The table below
contains 30 observations, each containing Y and X values. Please estimate the
following linear regression model on this dataset:
Y = a + b X
In this
estimation, what is the level of statistical significance for the intercept
coefficient (a) to be different from zero? I.e., the level of significance
above which, the test where the null hypothesis is that the coefficient
(intercept) is equal to zero, fails to reject the null.
Y
|
X
|
161
|
46
|
205
|
63
|
301
|
97
|
115
|
30
|
251
|
81
|
89
|
25
|
290
|
94
|
159
|
52
|
46
|
21
|
259
|
88
|
212
|
64
|
301
|
98
|
174
|
54
|
149
|
42
|
130
|
42
|
249
|
79
|
297
|
95
|
229
|
66
|
109
|
59
|
129
|
47
|
212
|
65
|
200
|
67
|
180
|
57
|
303
|
97
|
231
|
73
|
225
|
71
|
138
|
42
|
138
|
42
|
270
|
86
|
192
|
60
|
Question 4 options:
|
0.42361
|
|
0.57693
|
|
0.5653
|
|
5.630
|
Save
No comments:
Post a Comment